Section 1.3

The slope-intercept form of the equation of a line: The graph of the equation

$$
y=m x+b
$$

is a line whose slope is m and whose y-intercept is $(0, b)$.

The slope of a line passing through two points: The slope m of a nonvertical line through (x_{1}, y_{1}) and $\left(x_{2}, y_{2}\right)$ is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

where $x_{1} \neq x_{2}$.

Point-slope form of the equation of a line: The equation of the line with slope m passing through the point $\left(x_{1}, y_{1}\right)$ is

$$
y-y_{1}=m\left(x-x_{1}\right) .
$$

Parallel and Perpendicular lines

a) Two distinct nonvertical lines are parallel if and only if their slopes are equal, that is, $m_{1}=m_{2}$.
b) Two nonvertical lines are perpendicular if and only if their slopes are negative reciprocals of each other, that is, $m_{1}=-1 / m_{2}$.

Summary of equations of lines

a) General form: $A x+B y+C=0$
b) Vertical line: $x=a$
c) Horizontal line: $y=b$
d) Two-point form: $y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$

Problems

Problem 1. Find the slope and y-intercept of the equation of the line. Sketch the line.
a) $y=x-4$
b) $x-3=0$
c) $y+4=0$
d) $2 x+5 y=8$

Problem 2. Find the slope of the line passing through the pair of points.
a) $(2,4),(4,-4)$
b) $(0,-10),(-4,0)$

Problem 3. Find the slope-intercept form of the equation of the line passing through the points.
a) $(4,3),(-4,-4)$
b) $(1,1),\left(6,-\frac{2}{3}\right)$

Problem 4. Write the slope-intercept forms of the equations of the lines through the given point (a) parallel to the given line and (b) perpendicular to the given line.
a) $(-3,2), x+y=7$
b) $(4,-2), y=1$
c) $(-5,1), x=-2$

Problem 5. You are driving on a road that has a 6% uphill grade. This means that the slope of the road is $6 / 100$. Approximate the amount of vertical change in your position if you drive 200 feet.

Problem 6. A school district purchases a high volume printer, copier, and scanner for $\$ 25,000$. After 10 years, the equipment will have to be replaced. Its value at that time is expected to be $\$ 2000$. Write a linear equation giving the value V of the equipment during the 10 years it will be in use.

Homework: Read section 1.3, do \#11, 17, 23, 27, 39, 49, 51, 59, 69, 75, 95,97 (the quiz for this section will be similar to these problems)

